Skip to main content

Can Two Brown Eyed Parents Have a Blue Eyed Baby ?

Blue-eyed parents can have brown-eyed kids and other eye-oddities ?

Blue-eyed parents can have brown-eyed kids and other eye-oddities ?Eye color is much more complicated than is usually taught in high school (or presented in The Tech’s eye color calculator).  There we learn that two genes influence eye color.

One gene comes in two versions, brown (B) and blue (b).  The other gene comes in green (G) and blue (b).  All eye color and inheritance was thought to be explained by this simple model.  Except of course for the fact that it is obviously incomplete.

New research shows that the first gene is actually two separate genes, OCA2 and HERC2.  In other words, there are two ways to end up with blue eyes.

Normally this wouldn’t be enough to explain how blue eyed parents can have a brown eyed child.  Because of how eye color works (see below), if one gene can cause brown eyes, it would dominate over another that causes blue.  In fact, that is what happens with green eyes in the older model.  The brown gene dominates over the green one resulting in brown eyes.

See the video below :


Eye color is a complex trait that depends on the state of several interacting genes. The gene that usually decides the issue (blue eyes or brown eyes) is the OCA2 gene on chromosome 15. But it comes in different strengths. A person with a weak form of the OCA2 gene will have blue eyes. Likewise a person with a strong form will have brown eyes.

The plot thickens, though, because an individual also has other eye-color genes that each has a say in the final eye-color outcome. For example, if one of these lesser genes is strong, it can make the weak form (blue) of OCA2 work much more effectively — almost like the strong form (brown). Then the eye color may be a light brown or muddy grey. In fact, the resulting color can be any shade of brown, hazel/green, or blue depending on the strengths of the interactions.

Source :
How Blue Eyed Parents Can Have Brown Eyed Children
Blue-eyed parents can have brown-eyed kids


Comments

Popular posts from this blog

What is Three Parts of Nucleotide ?

What is Three Parts of Nucleotide ? Nucleotides are biological molecules that form the building blocks of nucleic acids (DNA and RNA) and serve to carry packets of energy within the cell (ATP). In the form of the nucleoside triphosphates (ATP, GTP, CTP and UTP), nucleotides play central roles in metabolism.  In addition, nucleotides participate in cell signaling (cGMP and cAMP), and are incorporated into important cofactors of enzymatic reactions (e.g. coenzyme A, FAD, FMN, NAD, and NADP+). A nucleotide is composed of a nucleobase (nitrogenous base), a five-carbon sugar (either ribose or 2-deoxyribose), and one or more phosphate groups. Three parts of nucleotide image  That are three parts of nucleotide, Nucleotides can be synthesized by a variety of means both in vitro and in vivo. There a 4 different nucleotides ATP,GTP (purines) TTP,CTP (pyrimidines) which differ in the chemical structure of the base. They are generally referred by a single letter A, G, T,C. UTP

The Noonan Syndrome Characteristics You Must Know

Noonan Syndrome is a genetic disorder that impedes normal development in various parts of the body. A child can be stricken with Noonan syndrome in a variety of ways: unusual facial characteristics, short stature heart defect, other physical problems, and sometimes mental retardation. Noonan syndrome is caused by a genetic mutation and are obtained when a child inherits a copy of the affected genes from the parents. It can also occur as a spontaneous mutation in children, which means there is no family history involved. The characteristics of children with Noonan Syndrome, among others: 1. Characteristics of the face -Early childhood. An infant with age less than 1 month seems lowly ears, short neck and at the back of the head low hairline -Childhood. Children have eyes stand out with the slope down and the nose is wide and round. Often seen the lack of facial expression. -Teens. At adolescence, her face is wide, usually the facial features become sharper and less promine

Why Patau Syndrome or Known as Trisomy 13

Trisomy 13 or Patau Syndrome  is the most severe viable trisomy caused by an additional copy of chromosome 13 that usually causes a host of developmental problems and physical deformities in a newborn. Patau syndrome is generally recognized at birth by the presence of structural birth defects and poor neurologic performance. Additional structural anomalies are common, particularly facial anomalies (midline clefts, hypotelorism, microphthalmia, and anophthalmia) arising from structural anomalies of the brain, frequently microcephaly and holoprosencephaly. Other associated anomalies include cardiac, renal, and intestinal (diaphragmatic hernia) anomalies. Characteristic features include low set ears, post-axial polydactyly, flexion contractures, rocker bottom feet, scalp defects, and haemangiomas. What is the cause of Patau Syndrome ? The exact incidence of Patau syndrome is not known, although it appears to affect females more than males, most likely because male fetuses do not